EXPLORATORY DATA ANALYSIS
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|. SAMPLING

Type of Sources:

* Primary Sources: Collect by yourself for a specific purpose

* Secondary Sources: Collect by someone else, some other purpose. VHLSS, PAPI, SME ...
Problems of Sampling:

* Biased sampling

* Noise

* Missing data, errors logs, ...
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2. EXPLORATORY DATA ANALYSIS — EDA

= “Too much emphasis in statistics was placed on statistical hypothesis testing...,

more emphasis needed to be placed on using data to suggest hypotheses to

test” Turkey - 1977 [6]

= "Procedures for analyzing data, techniques for interpreting the results of such
procedures, ways of planning the gathering of data to make its analysis easier,
more precise or more accurate, and all the machinery and results of

(mathematical) statistics which apply to analyzing data." Turkey - 1961 [5]

= The idea of EDA encouraged the development of statistical computing: S, S-PLUS, R.
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= Appling to data science and big data analysis @



2. EDA

VS HYPOTHESIS TEST

= Traditional hypothesis testing designed to verify a priori hypotheses about

relations between variables

= Exploratory Data Analysis (EDA) is used to identify systematic relations
between variables when there are no a priori expectations as to the nature of

those relations.

[8]

= From Business-Driven to Data-Driven




2. EDA — “UNDERSTANDING ABOUT

1. Uncover underlying structure

2. Detect outliers and anomalies, missing, mistakes
3. Maximize insight into a data set

4. Extract important variables

5. Determine optimal factor settings

6. Testunderlying assumptions

7. Develop parsimonious models

[7]




2. EDA

- TECHNIQUES

1. Data quantitative measurements
= Univariable

= Mutilvariable

2. Data visualization




J. STAT 101: VARIABLES AND TYPE

1. Qualitative (category)
1. Binary — where there are two choices, e.g. Male and Female;

2. Ordinal — where the names imply levels with hierarchy or order of preference, e.g. level

of education

3. Nominal — where no hierarchy is implied, e.g. political party affiliation.

2. Quantitative
1. Discrete (number of students in class)

2. Continuous (amount of milk in a gallon)
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J. STAT 101: PLOT

1. Graphs for a Categorical Variable 1. Graphs for a Single Quantitative Variable
1.  Pie Chart: percentile 1. Dot Plot
2.  Bar Chart: many categories 2. Frequency Histogram and Relative

Frequency Histogram
3. Stem-and-Leaf Diagram
4.  Time Plot

5. Boxplot or Box-and-Whisker Plot
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3. STAT 101: CENT!

1. Measures of Central Tendency
1. Mean : not resistant
2. Median
3. Mode
4. Trimmed Mean: (solve outlier)

= Care about mistakenly recorded

AL TENDENCY [9]
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3. STAT 101; CENTI

Series: 95, 18,69, 91, 82,76, 76, 86, 88, 80

= Mean = 82.1
= Median = 81
= Trimmed Mean:

= (69), 716,76, 18, 80, 82, 86, 88,91, (95)
The 10% trimmed mean = 82.13

= How about: 950, 78, 69,91, 82, 76, 76, 86, 88, 80

RAL TENDENCY [9]

Error series: 95, 78,69, 9, 82, 16, 16, 86, 88, 80

= Mean =73.9
= Median =79

= (9),69,76, 76,18, 80,82, 86, 88, (95)
The 10% trimmed mean = 79. 38
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J. STAT 101: SKEWNESS [9]

2. Skewness

mean = median = mode

The above distribution is symmeric. 3, Skewed Right
2, Skewed Left Mean to the right of the median, long tail on the right.
Mean to the left of the median, long tail on the left
\ mode median  mean
mean  median  mode The above distribution is skewed to the right,

’/
The above distribution is skewed to the left.



3. STAT 101: MEASURES OF VARIABILITY [9]

1. Range (affected by extreme values)

2. Interquartile Range (IQR): Q; - Q, (don't affected by extreme values)

median
25th 75th
percentile percen tile
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3. STAT 101: MEASURES OF VARIABILITY [9]

Variance and Standard Deviation
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= Add constant => sd not change, multi constant => sd * constamnt

= Why sample variance divide n-1 [10]
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4.

5.

3. STAT 101: MEASURES OF VARIABILITY [9]

Coefficient of Variation:

= CV =Standard Deviation / Mean

= Compare dispersion from 2 or more distinct population
Zscore

* Z = (observed value —mean) / SD

o
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0.0

1. Continues variable - Normal distribution — Multivariable Normal Distribution

J. STAT 101: PROBABILITY DISTRIBUTION
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J. STAT 101: PROBABILITY DISTRIBUTION

Discrete distribution — Multinominal distribution
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J. STAT 101: PROBABILITY DISTRIBUTION

3. Exponential Family

Probability density function = P(x) = Ae™ LONG TAIL
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J. STAT 101: PROBABILITY DISTRIBUTION

2.Binary variable - Beta distribution — Dirichlet distribution
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J. STAT 101: MULTIVARIABLE - CORE

1. Type of variable
1. Non-category — Non-category
2. Non-category — category

3. Category - category

2. Analysis

Pearson correlation

-

2. Ttest
3. ANOVA

4. Regression analysis

ELATION
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4. DRTA VISURLIZATION

= Show in R

= http://jkunst.com/highcharter/hchart.html

= https://www.r-graph-gallery.com/ridgeline-plot/
= https://www.youtube.com/watch?v=e2w-kKOVHNQ4



http://jkunst.com/highcharter/hchart.html
https://www.r-graph-gallery.com/ridgeline-plot/
https://www.youtube.com/watch?v=e2w-kOVHNQ4

5. MISSING VALUE [11]

= Ignore missing value

= Back-fill or forward-fill

= Replace with mean/median/mode/cluster mean ...
= Assigning An Unique Category

= Predict the missing value

o



b. OUTLIER

TYPES:
1. Univariate Outlier

2. Multivariate Outlier

Not unusual

Moderately
unusual

Moderately
unusual

Outliers Outliers
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b. OUTLIER

DBScan

Minkowski error
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b. OUTLIER

CAUSE

1.

© N o a &~ 0 b

Data entry errors (human errors)
Measurement errors (instrument errors)
Experimental errors

Intentional

Data processing errors

Sampling errors

Natural

o



b. OUTLIER

o o e O D

Transforming and binning values
Deleting observations:

Imputing: max, min ...

Treat Outliers separately

Detect error from systems

Original Variable

With Log Transformation

©



1. ANOMALY DETECTION
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https://www.analyticsindiamag.com/5-ways-handle-missing-values-machine-learning-datasets/
https://medium.com/datadriveninvestor/unboxing-outliers-in-machine-learning-d43fe40d88a6
https://www.kdnuggets.com/2018/08/make-machine-learning-models-robust-outliers.html

LESSON 1.2: COLLECTING THE DATA

Margin of Exror: How many sample we need ask?

Fori =1,...,n,let X; be arandom variable that takes 1 with probability p
and 0 otherwise, and suppose they are independent. Let X = Z?:l X;.

Then:

Pr(|X — E[X]| > /nb] < 2%

Chernoff-Hoeffding bound

o



